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FOREWORD 

This  document reports on an investigation and characterization of porous metal 
matrices by The Boeing Company as a portion of the "Fundamental Study of  
Transpiration Cooling", NAS 3-12012, initiated in July 1968. The work was 
administered under the direction of A. Fortini of the NASA Lewis Research 
Center. 

Boeing personnel who participated i n  the investigation described herein include 
J . L. Dutton, Project Leader; J . C. Y. Koh, Technical Leader; and R .  E .  Regan, 
Materials Engineer. 

The author i s  indebted to R .  W. Evans and B .  A .  Benson for their advice and 
assistance in performing the planning and analysis of the test data. The Electron 
Beam Welding was performed by W. C. Butterfield. 
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Characterization of Porous Metal Matrices for 
Transpiration Cooled Structures 

by 
R. E. Regan 

A BSTRACT 

Porous metal parts produced by two methods, sintered powder and compressed and 
sintered wire cloth, were characterized so as to assure their suitability for being 
used in transpiration cooling experimentation. 

The methods of characterization included a chemical analysis and an analysis of 
microstructure and porosimetry data. A description of the characterization methods 
used i s  included and the resultant data (porosity, mean hydraulic pore diameter and 
degree of interconnected porosity) reported. 
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1 .O I N TRO DUCT IO N 

Porous metal parts were procured from a commercial vendor with the intent of having 
samples with uniformly open porosity so that basic studies relating to transpiration cooling 
could be conducted. It was essential to the theoretical study that the pore size and pore 
distribution be closely controlled so that the effects of the matrix could be determined. 

Two types of porous metal matrices were procured: (1) a compacted and sintered wireform 
and (2) a compacted and sintered powder form e Each of these two matrices were procured 
in  three porosity levels (lo%, 20% and 40%) and i n  four thicknesses (1/4, 3/8, 1/2 and 
1 inch). 

The planned experiment purported to relate the heat transfer and mass flow characteristics 
of fluids flowing through the metal matrices under both isothermal and diabatic heat flow 
conditions. 

The scope of this report i s  restricted to the characterization of the porous metal parts 
purchased under NASA Contract NAS3-12012 and not to their performance as transpiration 
cooled structures e 

2.0 MATERIALS 

The specifications for the wireform and sintered powder metal parts required: (1) the 
porosity fraction ( e  ) be uniform between parts and within each part to *l%, (2) the 
chemistry of the stainless steel meet AMS 551 1A and the chemistry of the copper parts 
meet AMS 4701 
spherical or nearly spherical particles, (2) particles to be sized so the ratio of the largest 
to smallest particle not exceed 5:1 , and (3) the minimum rn 
and 50 microns ( 

In addition the specification of the sintered parts required: (1) 

npore diameter be 10, 15 
) for the parts of 10, 20 and 40% porosity fraction respectively. 

Table I l i s t s  a l l  the parts ordered for this study; however the vendor was unable to produce 
acceptable powder parts. Table I delineates all parts received prior to cancellation of 
the powder parts. 

3 .O EXPERIMENTAL PROCEDURPS AND RESULTS 

Upon receipt of the sample parts from the vendor the ASG Metal Research personnel 
performed the following tests to determine whether the parts complied with the speci- 
fication and to fully characterize the porous matrices: 

a. 

b e  

c, Oil impregnation method (ASTM 238-60) to determine interconnected porosity. 

Visual examination to determine surface clean1 iness. 

Dimensional and weight check to determine apparent bulk porosity. 

1 



d. Radiographic inspection to determi e un ;form i ty of densi ty ~ 

e. Microstructural examination to determine ore shape, size distribution and uniformity. 

g. Porosimetry analysis to determine pore size, distribution 
porosity . d degree of interconnected I 

3.1 

Immediately upon receipt of each sample i t  was viewed under Q wide field microscope 

particles. 
gnification to assure that th ce pores were not clogged with foreign 

d 2 illustrate the s &e of typical wlreform 
e was found at the sur 

powder samples. 
of several wire- 

form parts but this was at a tolerable 
way to remove these particles. 

ning proved to 

3.2 

The apparent bulk porosity of each sample was determin 
with a micrometer to N.001 inch and by weighing the ent 
to a sensitivity greater than f .02% e 

suring the part dimensions 
on an analytical balance 

rent porosity was computed using the following equation: 

wher 

= Apparent bulk porosity percent 

W = Sample weight in grams 
C = Conversion constant (6 a 102 x 10-2 in3/cm3) 

2 

= 8.03 g/cc (1) = Wrought metal d 
= Sample thickness in inches 

= 8.941 $e.(') 
m m ss cu 

bulation of the det r t  measurements and the computed porosity. 
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3.3 TEWCOM N ECTED 

Samples were cut from the received blocks usin r soluble cutting 

ring but the original 
th for the inter- 

P =  1 -  x 100 

where 
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3 .  

y called out in the materia! specifi 
ing f i lm readin 

were not available for porous 
B was not possible, howe 

hment of a precise 

density variations within many of the sintered powder sglm 
also found to contain cracks. 

Using this technique i t  was possible to select areas of uivaient density to be wed for the 
nspiration study samples, even though there were significant vari tions within the larger 

ock. This technique did not reveal measurable density vari n the wireforrn parts. 

3.5 MICROSTRUCTURE 

Specimens for metal lographic examination were prepared by sectioning using an abrasive 
saw and potting using an epoxy (Marglas) e Potting of porous structures must be accomplished 

erroneous pore size determination e 

l y  to assure that the pores do not become smeared during polishing and lead to 

The potting techniques employed for these samples involved immersing the parts in a thin 
s solution, evacuating to less than 50 torr for approximately 18 hours, raising the 

pressure to one atmosphere and curing at 14OF for 8 hours. After the initial potting the 
samples were rough polished and repotted as before from the polished surface to assure 
complete penetration of the pores at the surface to be examined e 

Following potting the samples were polished in the normal manner, The polished surfaces 
were then examined, unetched, at magnifications ranging from 5X to 250X. Photomicro- 
graphs of typical porous parts illustrating their microstructure are shown in Figures 3 
through 8. 

In addition to the microstructure o f  the sintered sampIes,photomicrog phs of the starting 
rad raw powders are shown in Figures 1 and 9 .  

3.6 

I analyses of several parts were conducted using sp ctrographic means to detect a l l  
elements except carbon Prior to submitting the sintered powder samples to th 
the parts were baked overnight in a vacuum of greater than IO-' torr to remov 
gases e Unsintered powder samples were first cold compacted before vacuum baking. Carbon 
determinations were made using the beco method. The 



3 -7 POROS Y 

detailed porosimetry deter 
g the Amineo-Window Me 

cury intrusion method 
upon tho theory that a 

ncm-wetting flu wi l l  fi l l pores only u 
pore size and fh absolute pressure for 

where D = 
P =  

ples (containing a total pore volum 

(the top and bottom faces were untouched) t 
fluid would remain in a manner such a 
cooling studies. 

and degreasing in aceton 

The machined and cleaned sampI 
sample holder end evacuated to 
mercury by immersing the tip of th 
to 6.3 psia. At  this pressure the 
pressure i s  gradually incre 
ments of the mercury colu 
the sample hold 
increased to a I 
stem as before. 

ion, and measure- 

and the pressure manually 

size distribution m 

cmnec ted 

ypical data plot for the 
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In the performance of these tests alternative methods were chosen. The wireform structure 
was highly repetitive and regular for the low density samples, therefore, an analysis of 
the microstructure permitted accurate measurements. 

The sintered copper parts were rejected because of excessive oxygen. contamination and 
non-uniform microstructure, therefore, porosimetry studies were not conducted on these 
samples. If, however, they were to have been conducted two approaches were considered: 
(1) to analyze the microstructure and make measurements based upon the micrographs or 
(2) internally oxidize the samples to prevent wetting and compensate for the thickness of 
the oxide f i lm. 

3.8 COMPUTATION OF THE MEAN HYDRAULIC PORE DIAMETER 

The most important characteristic o f  a matrix for transpiration cooling determinations i s  
the mean hydraulic pore diameter and not the mean pore diameter given by the mercury 
porosimeter. This characteristic is  defined by the following relationship and can be computed 
from the porosimeter data. 

- E - 4 -  
D~~ B 

= 

E = 

B = 

Mean h ydraul i c pore d iame ter 

Porosity fraction of interconnected pores per unit volume of matrix 
Surface area of open pores per unit volume of matrix 

D~~ where 

2 
Based upon the work of Carman(’) the equivalent pore diameter (D ) i s  defined by the 
following equation: 

e 

D 2 =  - 
P i  

e E ’ 0 jEp (D e. ) * d E  
I 

and 

D~~ = 4 ~  D e (7) 

= a shape factor ( 1, experimentally verified by Evans (6)) 
Ad 
bd = a shape factor (4 for cylinders) 

where: 

= incremental porosity fraction of  interconnected pores per unit 
volume of matrix penetrated by mercury E P i  

D = incremental pore diameter from mercury penetration data. 
e. 

2 I 

Util izing the porosimeter data for the relationship between (E,.) and E after extra- 
I P i  

polating the data to include those pores greater than 80p., the computation of the hydraulic 



pore diameter (DHM) was performed as follows: Plot the penetrated void volume/total 
penetrated void volume ( 
(equation 4) on semilog gr$ih paper. Numerical integration was employed to determine 
the approximate solution to equation 6. 

.) and the square o f  the pressure-pore size relationship 

2 2 
D + D  

P 
X 

1 

P 
De= ( e 0 

Because the porosimeter results were valueless for the low density wireform parts, the 
hydraulic diameter was calculated from the geometric values computed from the photo- 
micrographs in  the same manner as Evans(6t7). This method uses the relationship stated 
in  equation 5. The pore fraction i s  essentially the same as the bulk porosity because 
al l  pores are interconnecting (see Table II) or can be computed from the part geometry 
assuming smooth surface wires. The surface area of the pores i s  the same as the surface 
area of the wires after compensating for the surface area removed due to contact of 
crossing wires. The number o f  lengthsofwires and number of wire crossover contacts per 
unit volume provides sufficient data to compute the hydraulic pore diameter. 

* 

The same analysis as used by Evans was written into a b e i n g  Blitz computer program ana 
the data for a l l  the wireform parts computed. From the photomicrographs (Figures 4 
through 6), i t  i s  evident that as the density increased the keterogeniety of the structure 
increased and some adjustment had to be made for the samples containing 10% and 20% 
porosity. This was accomplished in the same computer program using the same criteria 
established by Evans(-/). 

The mercury penetration method differs from the metallographic method insofar as the 
mercury porosimetry data permits a direct masurement of the hydraulic pore diameter 
whereas the metallographic (geometric) method permits a direct measurement of the 
internal surface area ( ) o  The relationship given by equation 5 was used to convert 
from a pore diameter to a surface area or v:ce versa and both values are presented in 
Table II 

The accuracy of the geometric method to determine pore size and total porosity i s  
strongly dependent upon the selection of a truly representative micrograph 
of the nature of the wireform structure this can best be accomplished by means of a 
transverse section. However, because the total porosity data i s  not in  close agreement 
with the bulk part measurements and the appearance of non-uniformity of microstructure 
apparent i n  the micrographs, i t  must be concluded that the analysis of a single micro- 
graph to determine the warp and weave wire spacing and the layer thickness i s  not 
adequate for this material e Several metallurgical sections must be analyzed to achieve 
representative values 

Because 
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The geometric analysis used was uniqu to the wireform structure; however, in  a sub- 
sequent report which wil l be primarily conc rned with powder compacts the m 
developed by Smith and Guttman(8) wil l be 

3.9 ASSEMBLY OF SAMPLES TO SAMPL 

Although not specifically a part of the matrix characterization, the method of the joining 
the porous samples into the wrought s mple holders i s  discussed for 

ples were machined into 3/4 inch diameter cyiinden with QJ 3' taper on 
the side wall by conventional means. The metal smearing which occurred on the cylinder 
walls was inconsequential because the parts were joined to a solid sample holder. 

After machining the samples and holders were assembled) and placed under an electron beam 
and welded in vacuum at the rate of 20 rpm using a 31 kv, 95 ma power setting. Figures 11 
and 12 illustrate the top and bottom views of test welded assemblies along with a transverse 
section through the joint. 

The large holes in the weld in Figures 1 1  and 12 are not porosity but rather a section 
through a portion of the pressure probe hole which was drilled into the sample holder prior 
to welding. The smaller holes near the toe of the weld (top of photographs) i s  porosity but 
the extent is  inconsequential to the performance of the weld and to the degree of sealing 
accomplished. Note that a crack developed in the sintered powder sample adjacent to the 
pressure probe hose as a result of the high residual stresses inherent in the design. I t  i s  
therefore, imperative that the pressure probe hole be drilled after welding rather than 
before welding. 

Wireform 304 stainless parts used in this study can be succesofu!ly joined to wrought 321 
sample holders by electron beam welding. Welding of sintered powder p 
feasible but is  more difficult than the wireform material a 

The pits apparent in the wrought 321 sample holder (right half of cross section views) are 
indicative of a fairly "dirty" heat of steel which was obtained. 



4 .O co NCLUSIO NS 

1 .  

2. 

3 .  

4 .  

5. 

6. 

7. 

8. 

The wireform parts received under subcontract are acceptable for further study as 
transpiration cooled matrices. The sintered parts are not acceptable and have been 
rejected. 

Porous metals may be characterized in  terms of the meun hydraulic diameter by either 
interpretation of micrographs or by the mercury intrusion methods; however, each has 
some I imitations: 

The micrograph selected must be truly representative of the structure being 
analyzed. 

The analysis of micrographs to determine the hydraulic pore diameter i s  a 
I eng thy process e 

The micrograph cannot distinguish between total porosity and interconnected 
porosity. 

The mercury intrusion method gives a result based upon a much larger sample 
than does the micrographic method. 

The mercury intrusion method i s  not suitable for characterizing structures with 
large pores since the upper l i m i t  of resolution os approximately 80 

The mercury intrusion method cannot be used where a chemical reaction wil l 
take place between the mercury and the porous metal part. It i s  possible, 
however, to analyze a copper sample by the mercury intrusion method by pre- 
oxidizing the copper but an allowance must be made for the thickness of the 
oxide f i lm. 

. 

The mercury penetration method i s  the preferred characterization method where i t  
can be used and the micrographic method should be used primarily as a cross-check 
or as an a1 ternate method for structures with large pores. 

The wireform parts exhibited increasing degrees of heterogeniety with increasing 
density but were acceptable because they are representative of the particular process 
used. 

The heterogeniety of a l l  of the porous parts appeared to be relatable more to the 
density than the thickness 

The mercury porosimeter i s  not suitable for characterizing wireform parts with a 
porosity fraction greater than approximately 20%. 

The wireform parts investigated in this program are readily joinable using electron 
beam welding but the sintered powder parts have a marginal weldability. 

Discrepancies i n  the data reported by the various techniques are due in  part to the 
heterogeniety of the samples and the size of the specimens used. 
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Material 

304 
S tainle ea 
Steel  

Oxygen Free 

Copper 

H i g h  
conductivity 

TABLE I 

POROUS MATRICES REQUIRED FOR %IW OOOLING STUDY 

Yicroetructure 

Wirefow 

Sintored Powder 

0,250 
0,375 
O.rj00 
LOO0 
0.2w 
0.375 
0.508 
LOO0 
0 e 230 
0,375 
0. 
1, 

0 . 250 

0 * 250 
0,375 
O e 5  
l e 0  

0.375 

None 
None 
# O m  
lone 
s 202-1 
S 203-1 
s 204-1 
None 
S402-1, SC402-1 thru 5* 
5403-1, SC4Q3-1 thru 6* 
5404-1, SC404-1 thru 6* 
SC4oB-1 thru 4* 

6102-1 
C 103-1 
C 104-1 
NOLl0 

c202-1 
C 203-1 
c204-1 
None 
6402-1 
(2403-% 

* Semplea "S l ee  were 
auppUed as 2 1 / 2  inch equare blooksr 
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E I ement 

ca 
Ni 
C 
Mn 
Si 
S 
B 
Fe 

Element 

cu 
0 
Pb 
Sn 
Ca 
K 
P 
CI - 
F‘= 
A1 
NQ 
Si 
C 
N, 
H 

Ag 

CHE ous TRICES 

R202 
19.000/0 
9.82 

.055 
1.16 

.60 

.020 

.020 
Balance 

Powder 

96.2”/0 

2.02 
.0850 

.3400 

.3180 

. O X O  

.I140 

.0100 

.0330 

.1330 

.0660 

.1830 

.1810 

.0015 

.0025 

- 

R203 
23.0Ph 

9.85 
.o 

1.30 
.50 
,015 
.027 

Balance 

18.75% 
9.6 

.o 
1 .a 

.50 
,009 

B Q ~ Q ~ c ~  
- 

Copper 

C103 

93 .4O/O 98.8% 
.5 .5 
.0955 .19 

___. 
c102 

- 
,0453 
.go22 
.0031 
.0066 
.0297 
,0456 
,0547 
* 7544 
.0180 
,0055 
.OOOB 

- 
, 01 53 
.0005 
,001 3 
.0043 
.0866 
.OH0 
.0048 
,2851 
a 0473 
.0037 
* 001 0 

11.02 
.08 

.0085 

.om 
Bsl ance 

99.3% 
.5 
.1375 
- 
- 
.0168 
.0005 
.0028 
.0035 
,0289 
.0226 
.0061 
.0115 
.013 
.0058 
,0008 

Analyses by wet and atomic absorption sp 

spec trogrep h 

code Rxxx - Wireform matrix 
Cxxx - Sintered copp 
sxxx - Sht 

matr i x 

18.61% 
10.54 
.07 
. I  
.8 
.008 
,011 

Bal anc 

C403 

98.8% 
.5 
.268 
- 
- 
.037 
.0004 

.0220 

.0455 

. 01 38 

- 

’I .0219 

.lo65 

.0188 

.0031 

Powder 

18.96% 
10.90 

,005 
. 1 1  
.92 
.029 
.011 

Balance 

nominal pososlty - 
thickness In 1/8 inch 
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ORIGINAL WQVEN CLOTH ROLLED AND SINTERED TO 40% POROSITY 

ROLLED AND SINTERED TO 20% POROSITY ROLLED AND SINTERED TO 10% POROSITY 

MAGN I FI CAT IO N: 1 OX 

FIGURE 1 SURFACE APPEARANCE OF POROUS 304 CRES WIREFORM PARTS 
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10% POROSITY 

20% PO RO S ITY 

40% POROSITY 

PLANE PERPENDICULAR TO PART SURFACE 

FIGURE 3 POLISHED VIEWS OF POROUS 304 CRES WIREFORM PARTS MAGNIFICATION: 1OX 

PLANE PARALLEL TO PART SURFACE 



MAGN: 1OX 

FIGURE 4 TRANSVERSE SECTION THROUGH 1-INCH THICK POROUS 304 CRES 
WIREFORM PART ROLLED AND SINTERED TO 10% POROSITY 

17 



FIGURE 5 

MAGN: 7.9X 

TRANSVERSE SECTION THROUGH 1 -INCH THICK POROUS 304 CRES 
WIREFORM PART ROLLED AND SINTERED TO 20% POROSITY 



MAGN: 8.2X 
FIGURE 6 TRANSVERSE SECTION THROUGH 1-INCH THICK 

WIREFORM PART ROLLED AND SINTERED TO 40% 
PORO US 304 CRES 
PO RO S ITY 
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POROUS COPPER PRESSED TO 10% POROSITY 

OF COMPACTION OF COMPACTION 

PLANE PERPENDICULAR TO DIRECTION OF COMPACTION 

POROUS POWDER COMPACTS PRESSED TO 40% POROSITY 
PLANE PERPENDICULAR TO DIRECTION OF COMPACTION 

FIGURE 7 MICROSTRUCTURE OF POROUS SINTERED POWDER COMPACTS 
M A G N  I F1 CAT IO N : 250X 
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